The effect of simulated ischaemia on spontaneous GABA release in area CA1 of the juvenile rat hippocampus.

نویسندگان

  • Nicola J Allen
  • David Attwell
چکیده

An early consequence of brain energy deprivation is an increase in the frequency of spontaneous inhibitory and excitatory postsynaptic currents (sIPSCs and sEPSCs), which may disrupt neural information processing. This increase in spontaneous transmitter release has been reported to occur in calcium-free solution and has been attributed either to calcium release from internal stores or to a direct effect of hypoxia on the transmitter release mechanism. Here we investigate the mechanism of the increase in sIPSC frequency that occurs in area CA1 of rat hippocampus during simulated ischaemia, by making patch-clamp recordings from CA1 pyramidal neurones. When recording in whole-cell mode, exposure to ischaemic solution increased the sIPSC frequency 30-fold (to 49 Hz) after 5 min, and doubled the sIPSC amplitude. Ischaemic sIPSCs were action potential independent, vesicular in origin and, contrary to the results of earlier studies which did not buffer extracellular calcium to a low level, dependent on extracellular calcium. The properties of the ischaemic sIPSCs were not affected by depleting intracellular stores of calcium or by blocking the neuronal GABA transporter GAT-1. Recording from neurones using gramicidin-perforated patch-clamping showed a 10-fold smaller, more transient increase in sIPSC frequency during ischaemia, with no change of sIPSC amplitude, suggesting that whole-cell clamp recording increases the ischaemia-induced sIPSC rate and amplitude by controlling the intracellular milieu.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Noise Pollution Exposure during Pregnancy on Long Term Potentiation Induction in Pyramidal Neurons of Hippocampus CA1 area in Male Rat Offsprings

Background: It is believed that cognitive processing is easily disturbed by incompatible environmental stimulations. Many studies have shown that prenatal stress affects fetal brain development. The aim of this study was to evaluate the effect of noise pollution exposure during conception period on neural activity of hippocampus CA1 area in male rat offspring. Methods: Four groups of rats inclu...

متن کامل

Nitric oxide within the rat hippocampal CA1 area may play a role in morphine tolerance

Hippocampus as part of the limbic system plays an important role in abused drugs-induced memory. The role of glutamate receptor within the hippocampal CA1 area in morphine-induced memory has also been postulated. Previous studies indicated that glutamate receptors exert their effects in part through the release of nitric oxide (NO). In the present study, the effects of intra-CA1 area injections...

متن کامل

Nitric oxide within the rat hippocampal CA1 area may play a role in morphine tolerance

Hippocampus as part of the limbic system plays an important role in abused drugs-induced memory. The role of glutamate receptor within the hippocampal CA1 area in morphine-induced memory has also been postulated. Previous studies indicated that glutamate receptors exert their effects in part through the release of nitric oxide (NO). In the present study, the effects of intra-CA1 area injections...

متن کامل

Effects of Donepezil Hydrochloride on Neuronal Response of Pyramidal Neuron of the CA1 Hippocampus in Rat Model of Alzheimer\'s Disease

Introduction: Donepezil (DON), an Acetylcholinesterase Inhibitor (AChEI), is widely used in the treatment of Alzheimer’s Disease (AD). The current study aimed at evaluating the effect of donepezil hydrochloride on pyramidal neuron response in CA1 region of a rat model of AD. Methods: In the current experimental study, adult male Wistar rats were randomly divided into four groups: Nucleus Basal...

متن کامل

The Involvement of Intra-Hippocampal Dopamine Receptors in the Conditioned Place Preference Induced By Orexin Administration into the Rat Ventral Tegmental Area

The activity of dopamine (DA)-containing neurons in the ventral tegmental area (VTA) is a key mechanism in mesolimbic reward processing that has modulatory effects on different diencephalic structures like hippocampus (HIP), and receives inhibitory feedback and excitatory feed forward control. In addition, within the hippocampus, DA receptors are mostly located in the dorsal part (CA1) and dopa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of physiology

دوره 561 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2004